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Abstract. This work investigates the reflection and transmission properties of a circular arc plate which is 
submerged in deep water. The purpose is to compare the reflective properties of a circular arc plate with those for 
a submerged, circular cylinder in order to assess the suitability of using circular arc plates when constructing a 
water wave lens. Linear theory is assumed and two separate techniques are used to determine the wave field. The 
first involves expanding the potential as a series of multipole potentials outside a circular region and a series of 
nonsingular solutions of Laplace's equation within the region and matching the expansions on the boundary. The 
second technique is based on a variational procedure and is used to derive an explicit, approximate expression 
for the reflection coefficient, under the assumption that the plate is short compared with the other length scales in 
the problem. Results are presented which compare the approximate solution with the full numerical method for a 
variety of plates. Finally, the full numerical calculations of the reflection and transmission coefficients for a plate 
are compared with those for a submerged, circular cylinder. 

1. Introduction 

The idea of constructing a water wave lens which would focus waves prior to extracting 
energy from them has been developed by Mehlum & Stamnes [1] and more recently by 
Murashige & Kinoshita [2]. A lens is constructed from a system of underwater structures 
which is designed so that a diverging wave experiences a nonuniform phase shift as it passes 
over the lens which transforms it into a converging wave. Each of the elements of the lens 
should therefore have the property that it reflects very little of the incoming wave but is able 
to induce a phase lag in the transmitted wave. Mehlum & Stamnes [3] considered the use of 
a submerged, circular cylinder as a lens element as Dean [4] had previously shown that this 
body has the ideal property that it does not reflect normally incident waves of any frequency 
when placed in water of infinite depth. However, it may not always be possible to construct 
a cylinder of  sufficient size to obtain the phase shifts required and so other bodies have been 
considered such as submerged, horizontal plates (McIver [5]), chevron shaped plates and 
arrays of submerged, circular cylinders (Murashige & Kinoshita [2]). Unfortunately however, 
the simplest of these bodies, the horizontal plate, can reflect quite large amounts of the incident 
wave over a range of frequencies. The purpose of this work is to investigate the reflection 
and transmission properties of a circular arc shaped plate. Although it is a plate, this body is 
shaped like the top of a circular cylinder and so might be expected to have similar reflective 
properties to the cylinder. 

Wave scattering by two-dimensional, flat plates has been considered by many authors. 
In particular Ursell [6] showed that there is an explicit solution for wave scattering by a 
surface-piercing vertical barrier in infinite depth water. His work was extended by John [7] 
to consider barriers inclined at angles 7r/2n to the horizontal, although the solution rapidly 
becomes more complicated as n increases. Further extensions to submerged plates, obliquely 
incident waves and more than one barrier have been made by Evans [8], Evans & Morris [9] 
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Fig. 1. Definition sketch 

and Porter [10]. Similarly, the horizontal plate has been the subject of many investigations. 
Although there does not exist an explicit solution for a finite, horizontal plate, numerical 
methods such as the finite element method (Patarapanich [11]) and a matched eigenfunction 
expansion (Mclver [5]) have been used to obtain values for the reflection and transmission 
coefficients. In addition, the Wiener-Hopf technique has been used by Burke [12] and Heins 
[13] to generate explicit forms for the reflection coefficient associated with a semi-infinite 
plates, both submerged and in the free surface. More recently, Parsons & Martin [14] have 
developed a method based on hypersingular integral equations to calculate the reflection from 
a plate of arbitrary inclination. Their method may be generalised to plates which are not flat 
and Parsons & Martin [15] presents some results for a submerged, circular arc plate which 
have been used to verify the results obtained in this work. 

Two methods are used here to investigate the reflective properties of a submerged, circular 
arc plate. The first is based on the method of matched eigenfunction expansions, (see e.g. Mei 
& Black [17]), and uses the multipole potentials derived by Ursell [ 16]. In a different physical 
context, Norris & Yang [18] used a similar technique to calculate the stress on a partially 
bonded fiber. The second method employs the Schwinger variational approximation, (see e.g. 
Miles [19]), and explicitly includes the form of the singularity in the velocity at the plate tips 
in the representation of the potential. These methods are described in §2 and §3 respectively 
and results are presented in §4. 

2. The method of matched series expansions 

A wave is normally incident from the left on a symmetric, circular arc plate which is submerged 
in water of infinite depth, as illustrated in figure 1. Cartesian axes are chosen so that the y axis 
is directed vertically downwards and the x axis lies in the undisturbed free surface. The plate 
occupies an arc of a circle of radius a with centre at depth h. Polar coordinates (r, 0) based 
on the centre of the circle are defined such that 

x = r s i n O ,  y = h + r c o s O .  (!) 

The ends of the plate are given by 0 = ± a .  
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The water is assumed to be inviscid and incompressible and the flow is irrotational and so 
it may be described by a velocity potential Re[- igA¢(x ,  y)e-i~t/a~] where ,~ is the frequency 
of the incoming wave, A is its amplitude and g is the acceleration due to gravity. The wave 
steepness is assumed to be small and linear theory is used. Thus ¢ satisfies 

~72(~ : 0 in the fluid (2) 

with the free surface boundary condition 

0¢ 
K ¢ +  y y  = 0  o n y = 0  (3) 

where K = ~2/g. The arc is assumed to be fixed and so 

0¢ 
- -  = 0  o n r = a , a < 0 < 2 7 c - a .  (4) 
Or 

At the ends of the plate there will be square root singularities in the velocity. There is no 
motion at large depths and so 

V ¢ ~ 0  as y --, oc. (5) 

The radiation condition at large distances may be expressed as 

e iKx-liy + R e  - i K x - K y  a s  x -- - ~  
¢ ~ T e  i K x - K y  a s  x ---+ ~ .  

(6) 

where R and T are the reflection and transmission coefficients respectively. 
A representation for ¢ is obtained by splitting the fluid into two regions, namely the inside 

and outside of the circle of radius a. In the outer region the potential may be considered to 
arise from a certain normal velocity distribution around the circle and so may be expressed 
in terms of the multipole potentials derived by Ursell [16] to describe wave scattering by a 
submerged, circular cylinder. Thus, in the outer region ¢ is written as 

oo n 

= e i I£x- I iy  + Ka ~ a ~ s-s --~-LP~e~ + P~¢~] (7) 
n = l  

where ¢~ and ¢~ are the symmetric and antisymmetric multipole potentials given by 

COSrt0 (_l)n-1 fo~ [K + g] 
¢~ - rn +7----[n ~ Jo [ . / - f~-  gl gn-'e-g(Y+h)COSeX de 

and 

-~ ( -  1 )_______~ 2~riK~e_K(y+h ) cos Kx 
( n -  1)! 

sinn0 
r n (n-~(-1)~l)! So ~ [K[K + g] sinexd e -  gJ 

(8) 

(-1) 
(n - 1)-----~ 27riI(%-1C(u+h) sin Kx (9) 
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and p~ and pa are coefficients to be determined by appropriate matching of the solution for ¢ 
to that in the inner region. By deforming the contour of integration in equations (8) and (9) it 
may be shown that 

( -1 )~  27riKne-l~he ~KI~:I-Ky as Ix] --+ c~ (10) 
~ ( n  - 

and 

( - 1 )  n-~ 
ca ,,~ --(n-- _l~.sgn(x)27rKne-Khe~Kl~l-Ky as Izl-+ (11) 

Thus, the expansion in (7) automatically satisfies the radiation condition (6) provided that the 
reflection and transmission coefficients are defined by 

oo ( _ l ) n ( K a ) n + l  (pa + ip~) (12) 
R = 27re -Kh Z n! 

n = l  

and 
oo 

T =  1 + 27re -Kh Z ( - l )n(ga)n+l(-pa + ip~). (13) 
n! 

n = l  

In the inner region, r < a, there is no free surface and so the potential may be expressed 
a s  

oo rn 
¢ = e iKx-K'~ + Ao + ~ -d-~[A~cosnO + BnsinnO] (14) 

n = l  

where An and Bn a r e  further coefficients to be determined. (The incident wave term is included 
in (14) for later convenience. In principle, it could be expanded in a series of r ~ cos nO and 
r n sin nO and incorporated into the existing series.) The unknown coefficients in (7) and (14) 
are determined by requiring the potential in each region to satisfy the body boundary condition 
(4) and also by requiring ¢ and O¢/Or to be continuous on r = a, -c~ < 0 < c~ to ensure 
continuity of pressure and velocity in the fluid. A combination of these conditions shows that 
O¢/Ov is continuous everywhere on r = a, (except at the actual plate tips where there is 
a square root singularity in the velocity). Thus, the inner and outer expansions for ¢ in (7) 
and (14) may be differentiated with respect to r and equated on r = a. After the multipole 
potentials are expanded in terms of cos mO and sin mO this yields 

Kay_, p~ - c o s n O +  mMm~cosmO + p ~  - s i n n O +  ~ m M m n s i n m O  
n = l  m = l  m = l  

= Zn[AncosnO+BnsinnO], -~r <O<_Tr, O # ± a ,  (15) 
n = l  

where 

M m  Tt 
( - 1 ) ' ~ + n - ' a  m+n _[~ [K + g] gm+n-,e-2eh dg 

n!m! Jo k K - g J  
( -1 )  m+n 

-~ n!m! 27ri(Ka)m+ne-2Kh" (16) 
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Multiplication of (15) by cos kO and integration from - r r  to ~r gives 

P@ ~ 
Ak = Ka  - + Z pnMk" 

n = l  

, k =  1 , . . . .  (17)  

Similarly, multiplication of (15) by sin kO and integration from -Tr to 7r gives 

Bk Ka + a = -- Pn M~, 
n =  1 

, k = 1, . . . .  (18)  

Equations (17) and (18) represent expressions for the unknown coefficients in the inner 
expansion of the potential in terms of the coefficients in the outer expansion. Further relations 
between the sets of coefficients are obtained by requiring continuity of pressure on the fluid 
interface section of r = a and by satisfying the body boundary condition (4). From (7) and 
(14), continuity of ¢ on r = a, - a  < 0 < a requires that 

[cos 0 
Ka E P~ 

n =  1 

- - +  ~ Mmn cos mO + p~ -- + M~n sin mO 
m=O m=l  

= Ao + ~ An c o s  nO + B ,  sin nO, 
n = l  

- a  < 0 < a. (19) 

Multiplication of (19) by cos kO and integration over the range - a  < 0 < a gives 

°° [C~ ~-~ ] ~--~A,~Cnk 
E pS .____.~k + MmnCmk = --K-aa ' 
n = l  m=O n=O 

k = 0, 1, . . . .  (20) 

where 

/? Cnk = cos nO cos kO dO. 
o~ 

(21) 

Similarly, multiplication of (19) by sin kO and integration over the range - a < 0 < a gives 

E pan ~ + MmnSmk 
n = l  m = l  

~-~BnSnk k = 1 2,. 
Ka n = l  

(22) 

where 

/: Snk = sin nO sin kO dO. 
O~ 

(23) 

After the expansion for ¢ in the outer region in (7) is differentiated, the body boundary 
condition (4) yields 

K a ~  p~ - c o s n O +  mMm,~CosmO +pan - s i n n O +  mMmnsinmO 
n = l  m = l  m = l  

= _ e - K h  
( -1)n(Ka) n 

n=l~ - ( ~ - = ~ ) i  [cos nO - i sin nO], a < 0 < 2 7 r - a ,  (24) 
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where the normal derivative of the incident wave train has been expanded on r = a in terms 
of cos nO and sin nO. Multiplication of (24) by cos kO and sin kO respectively and integration 
over the range ~ < 0 < 27r - c~ gives 

oO 

Eft 
n = l  

oo 

--Dnk + E mMrnnDmk 
m = l  

= _e -Kh ~ ( -1 )n (Ka)n - I  
n = l  "~ 7 -~) I. ' Onk ' 

and 

Ep: 
r t =  1 

where 

OO 

- T a t  + ~ mMmnTmt  
m----I 

and 

Dnt  = 1 27r-a 
d O "  

~o (_ l )n (Ka)n_ l  
= ie-A1h 1)! 

n----I 

cos nO cos kO dO = 7r6nt(1 + 5nO) - Cut 

k =  1 ,2 , . . . ,  

(25) 

Tnt, k = 1 ,2 , . . . ,  (26) 

(27) 

j f  27r-- O~ 

Tnk = sin nO sin kO dO = ¢rg,~k(1 - 5no) - Snk (28) 
O£ 

where 5nk is the Kronecker delta. The systems of equations in (20) and (25) arise from applying 
the appropriate boundary conditions over complementary parts of the interval -~- < 0 < 7r 
and using a Galerkin-type procedure in each part in turn. In order to include the information 
over the entire range -Tr < 0 < rr these systems should be combined in an additive fashion. 
However, there is a certain amount of choice in how the equations are combined. Numerical 
experimentation suggests that simply adding the two systems together does not lead to a system 
of equations which exhibits good convergence properties when truncated and a combination 
which has better numerical properties is obtained when k /2  times the system in (20) is 
subtracted from the system in (25). After the coefficients Ak, k = 1, . . .  are eliminated from 
(20) by using (17), this combination of equations yields 

n = l  m = l  

O4) 
kCok AO = e -Kh E ( -1 )n (Ka)n - I  

- 2K------a -(-~7 ~)i (C~t - 5ntTr), k = 1, . . .  (29) 
n = l  

In addition, there is one extra equation which arises from (20) when k = 0. After the 
coefficients Ak, k = 1, . . .  have been eliminated this equation becomes 

p~ + MonCoo K-----~ - O. (30) 
n =  | 

In principle, this last equation may be thought of as an equation for A0 in terms of the outer 
variables, ((17) only holds for At,  k = 1, ...). In practice, it is more convenient not to eliminate 
A0 between (30) and (29) but to solve the larger system directly for p~ and A0. A similar 
set of equations are obtained for the antisymmetric multipole coefficients by subtracting k /2  
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times the system in (22) from the system in (26) and eliminating the B~ by using (18). This 
yields 

pan Snk 1 - - 5nkrc + ~ mMmn(5.~:Tr - Sm~) 
n= 1 m =  1 

oc ( _ l ) n ( K a ) n _ l  
-= i e - t ' ; h  Z - ( n :  l~.l (~nk 7r -- '-qnk), k = 1 , . . .  (31) 

n : l  

The systems of equations for the coefficients p~, Ao and p~ are truncated and solved numerical- 
ly using a NAG library routine. The resulting coefficients are substituted into the expressions 
for R and T in (12) and (13) and graphs showing the variation of these quantities with 
frequency will be presented in §4. 

3. A variational approximation 

In this section, approximations to the reflection and transmission coefficients are obtained 
using the Schwinger variational procedure. This technique has been applied to many two- 
dimensional water wave problems involving rectangular geometries by, for example, Miles 
[19], Mei & Black [17] and Evans & Morris [9] 

It is convenient to define V(O) to be the jump in potential across the circle r = a. This 
quantity is split into its symmetric and antisymmetric parts, V(O) = V~(O) + Va(O) and then 
expanded on r = a using (14) and (7) to give 

v (0) Ka Z P- co 0 = ~ + Z M m ~ c ° s m 0  - Z A n c o s n O ,  - z r < 0 < z r  (32) 
n=l m=0 n=0 

and 

~ [sin.n0 ~ ] ~ 
Va(O)= K a ~ - ~ p ~  -- + M m n s i n m 0 -  BnsinnO, -Tr < 0_< Tr. (33) 

n=l ra=l n=l 

The coefficients An and Bn, n = 1,... are eliminated from (32) and (33) using (17) and (18) 
to give 

o o  O~ g-, ~ cos nO 
Vs(O) = 2 K a  z--~Pn -n- ao + K a  ~-~pS Mon, -Tr<0_<Tr (34) 

n=l n=l 

and 

vo(o )  = 2 g a  
o ~  X" a sin nO 

z..,Pn n ' -Tr<0_<Tr. (35) 
n=l 

Multiplication of (34) and (35) by cos mO and sin mO respectively and integration between 
-Tr and 7r gives 

2 7r K a p S~ 
[ 2 7 r - a  Vs (0) cos m O  d0, m = 1 , . . .  (36) 

m j ~  

and 

27rKap~ _ f zTr - c~  Va(O)  s i n m O d O ,  m = 1 , . . . ,  
m ~,o~ 

(37) 



582 M. Mclver and U. Urka 

noting that the potential jump on r = a is zero on the fluid interface, i.e. - a  < 0 < a. 
It is also convenient to define U(O) by 

U ( O ) = a ~ r [ ¢ - e  iKz-Ky] o n r = a ,  - T r < 0 < T r ,  0#4-c~.  (38) 

This is split into its symmetric and antisymmetric parts, U(O) = Us (0) + Ua (0) and from (7) 
may be written as 

Us(O) iKa s i s T - PnmMmn cos mO = Ka Pn cos nO + mM~n cos m 
n = l  m = l  m = l  

(39) 

and 

U a ( O ) _ i K a Z  a i • a p ~ m M ~  sin mO = Ka Pn sin nO + ~ m M ~  sin m , 
n = l  m = l  n = l  m = l  

(40) 

where M~n and M~n are the real and imaginary parts of Mmn respectively. From the body 
boundary condition (4) Us(0) and Ua(O) are given on r = a, a < 0 < 27r - c~ by 

o o  

Us(O) = - e  -Kh Z ( -1)n(Ka)n cosn0 on a < 0 < 2~r - a (41) 
~=l ( n -  1)! 

and 

Ua(O)=ie-Kh~-~ - ( n - - i ~  sinn0 o n c ~ < 0 < 2 7 r - - c ~ .  (42) 
n = l  

From (12) the reflection coefficient may be written as R = Rs + Ra where 

o~ (_  1)n(ga)n+l  
Rs = 27rie -Kh ~ n! P~ (43) 

n = l  

and 

oo (_l)n(Ka)n+l 
Ra = 21re -Kh ~ n! P~" (44) 

n =  1 

This may be used together with (16), (41) and (42) to rewrite the left-hand sides of (39) and 
(40) as U,(8)(1 + Rs) and Ua(0)(1 - Ra) respectively, in the region c~ < 0 < 21r - c~. Thus, 
substitution of (36) and (37) into the right-hand sides of (39) and (40) yields 

~.~ [ 2 ~ - ~  
U~(O)(1 +Rs)  = Kns(O,O')Vs(O')dO', c~ < 0 < 27r - c~, (45) 

r t = l  J ( ~  

where 

l [ - c o s n O c o s n O ' + ~ m M ~ c o s m O c o s n O ' ]  (46) Kns(O, 0') = ~-~n 
m----1 
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QS 
R~ - . (54) 

1, --  QS 

where 

~ 27r-a 
Qs = X~(O)U~(O) dO (55) 

and Qs is a real quantity. A similar analysis gives 

Qa 
Ra -- Qa - i (56) 

and 

oo f 2 7 r - a  
Ua(0)(1 - R,~) = ~ Kna(O, O')Va(O') dO', a < 0 < 2rr - c~, (47) 

n = l  cz 

where 

I 1 
Kn,(O, 0') = - - n  - sin nO sin nO' + Z mM~n sin mO sin nO' (48) 

27r 
m = l  

It is not possible to interchange the order of summation and integration in (45) and (47) as 
the resulting series would not converge. (Evans & Morris [9] overcame a similar problem by 
introducing an artificial exponential decay factor in the kernel of the equation and taking the 
limit as the exponent tends to zero. However, it is not necessary that the order of integration 
and summation should be changed here.) By writing 

Vs(0) = (1 + Rs)Xs(O) (49) 

and 

Va(O) = i(1 - Ra)Xa(O) (50) 

the following equations are obtained for X, andXa: 

/2~-~Kns(O,O')Xs(O')dO'= Us(O), a < 0 < 27r -  a (51) 
n = l  Jc~ 

and 

[2zr-aKna(O, Ot)Xa(Ot)dOt= --iUa(O), O~ < 0 < 27r - o~. (52) 
n = l  JC~ 

The quantities Kns(O, 0'), Kna(O, 0'), Us(O) and -iUa(O) are all real and so X~ and Xa must 
be real functions. From (43) and (41) it may be shown that 

/ 27r-a 
R ,  = - i  dO (53) 

JO~ 

and so by rewriting Vs in terms of X~ using (49), R~ may be written as 
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where 

[ 21r-c~ 
(~a = X a ( 8 ) ( - i U a ( 8 ) )  d8 (57) 

J c ¢  

and Qa is also a real quantity. 
A variational approximation to Xs is sought in the form Xs(O) = asWs(O) where as is a 

constant and is chosen so that 

f t 2~-~ asW~(8)Us(8) dO = a~Ws(O) I(~(8, 8')asWs(8') dO'dO. (58) 
JO~ J(:~ n ~ l  Og 

Substitution of this approximation into (55) yields 

us(s/w (8) d8 
qs  = (59) 

i 2~-c~ Ws( O ) Kns( 8, O') W~( O') dO'dO 
a s  n = l  Jc~ 

The success of the approximation depends on a suitable choice for the function Ws(O). There 
are square root singularities in the velocity at the tips of the plates and the simplest way to 
model this is to choose 

Ws(8) = (8 - cQl/Z(zr -- c~ - 8) 1/2, ~ < 8 < 2Z - ~. (60) 

Such an approximation allows only a very simple variation in potential along the length of 
the plate and so may be expected to give good results only when the plate is short compared 
to the wavelength and occupies a small part of the circle. A similar approximation was used 
by Mei & Petroni [20] when considering the wave scattering by a vertical, circular harbour 
which contains a narrow gap. Substitution of (60) into (59) yields 

2 

n------(--Jl(n(Tr - c~)) 
Q~ = ~ (61) 

E J2(n(~r-c~)) + E (-1)m+nM~nJl(n(Tr-cO)Jl(m(~r-cQ) 
n=l ?'t m=l 

where Gradshteyn & Ryzhik [21] (3.752.2) has been used to write 

f 2 1 r - ~  ( _ l ) n  
cosn8 (8 - cQ1/z(2~r - c~ - 8)1/2 d0 = ~r(Te - ~)Jl(n(~ - a) )  (62) 

Jc~ ~t 

and Jl is a Bessel function of the first kind. 
The corresponding variational approximation to X~(0) is given by X~(O) = aaW~(O) 

where 

Wa(8) = (8 - ~r)(8-  oz)1/2(2~- - oz -- 8) 1/2, ol < 8 < 27r -- C~ (63) 

and the constant a~ satisfies 

i i 2~r-C~aaWa(8)(-iUa(8)) d8 = aaWa(8 I(na(8, 8')a~Wa(8') dS'dS. 

(64) 
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Fig. 2. Comparison o f  approximate and exact values of  I RI; a / h  = 0.8, ct = 0.97r 

A similar analysis yields ]2 
27re_ZK h ~ (Ka)__~nj2(n(Tr _ c~) ) 

n! 
Qa = (65) 

j 2 (n (Tr - °O)  + (-1)m+nMrmnJ2(n(rr-o~))J2(m(Tr-c~)) 
n=l n m = l  

where Gradshteyn & Ryzhik [21] (3.771.10) has been used to write 

f2~ -~  sin n0(0 - 7r)(0 - - ~ - = (-1)'~Tr(Tr - cJ2J2(n(Tr - cJ)(66) c~)1/2(27r 0)1/2 dO 
n 

and J2 is a Bessel function of the first kind. The expressions for Qs and Qa in (61) and (65) 
are substituted into (54) and (56) and the resulting approximation to the reflection coefficient 
is compared with the results from the full numerical solution in the next section. 

4. Results and discussion 

The numerical scheme for the matched series expansion method, described in §2, was first 
checked by reproducing the results of Ursell [16] for the submerged, circular cylinder in the 
limit as a -+ 0 and also ensuring that energy was conserved, (i.e. IRI 2 + ITI 2 = 1). Values of 
the reflection coefficient were then compared with those given by Parsons & Martin [ 15] for 
a number of different plates and two decimal place agreement was obtained in the majority 
of cases as demonstrated in Table 1. In all the calculations, it was found that 256 multipole 
potentials were sufficient to ensure numerical results accurate to two decimal places and in 
several cases less terms were required. In particular, many fewer terms were needed to model 
the wave scattering by a circular cylinder than any one of the plates. This is thought to be 
because the velocity potential is modelled by a series of smooth functions and in order to 
produce a singularity in its derivative at the tips of the plate, the coefficients in the series 
have to decay at a certain rate which is not as fast as the coefficients in a series for which the 
velocity is bounded. Thus more terms are needed in the series expansion to obtain the same 
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Fig. 4. Comparison of approximate and exact values of IR{; a/h  - -  0 . 8 ,  a = 0.57r 

level of accuracy in any calculation. Here the variational approximation has an advantage over 
the full solution as the behaviour of the potential at the ends of the plate appeared explicitly 
in its representation, as shown in (60) and (63). The disadvantage of the approximation is 
that it does not allow for large variations in the potential along the length of the plate and 
so is expected to perform well only when the plate is short compared to the wavelength and 
occupies a small fraction of a circle. Analogous results were obtained by Mei & Petroni [20] 
who used a similar approximation when modelling the wave scattering by a vertical, circular 
harbour which contains a narrow gap. 

Figures 2-4 compare the values of IRI calculated from the full numerical solution with 
those obtained from the variational approximation for plates for which a/h = 0.8. The first of 
these figures is for a plate of length equal to 0.27ra, (equivalent to a value of c~ = 0.970. This is 
the shortest of  the three plates and so is the one for which the approximate solution should give 
the best agreement. As can be clearly seen from figure 2, the approximation to the reflection 
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Table 1. Comparison of  the matched series results with results of  Parsons & Martin 
[15] 

Matched series results Parsons & Martin [15] 

Plate parameters K a  ]R] arg R ]R I arg R 

a/h=0.9139 0.5305 0.7223 2.8094 0.7237 2.7998 

~ = 0 . 7 ~  1.0610 0.2743 -2.3145 0.2852 -2.3264 

1.5915 0.0518 1.1029 0.0506 1.0992 

2.1221 0.0485 1.0874 0.0507 1.0845 

a / A = 0 . 8 8 8 4  0.3979 0.4820 2.5410 0.4841 2.5352 

~ = 0 . 6 ~  0.7958 0.2586 -2.6607 0.2648 -2.6675 

1.1937 0.0083 -2.3713 0.0097 -2.3738 

1.5915 0.0277 0.7732 0.0283 0.7718 

a/h = 0.8642 0.3183 0.2935 2.3490 0.2957 2.3460 

~ = 0 . 5 ~  0.6366 0.2057 -2.9432 0.2095 -2.9466 

0.9549 0.0353 -2.6399 0.0364 -2.6408 

1.2732 0.0083 0.5278 0.0084 0.5278 
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Fig. 5. Variation of  rRI with frequency; a/h = 0.9 

coefficient is very close to the exact solution over the whole range of frequencies considered. 
The next largest plate has a length equal to 0.67ra, (equivalent of a value of a = 0.770. 
From figure 3 it may be observed that whilst the approximation is good at low frequencies, 
it starts to diverge from the true solution at K a  ,~ 0.4. It is often possible to prove that 
quantities calculated using a variational procedure provide bounds for the exact quantities, 
(see e.g. Evans & Morris [9]). In this case, the numerical evidence indicates that the values 
of Qs and Q,~ generated from the variational approximation are negative and, in magnitude, 
are lower bounds for the exact values. However, we were unable to prove this because we 
were unable to show that the operators in (51) and (52) are negative definite. Even if the 
variational approximation does yield bounds for Qs and Qa these do not translate a bound for 



588 M. Mclver and U. Urka 

Arg ,T) (deg) /////,/" 

50 [ i  i "  - . . . . . .  a = 0.75n 

[i / . . . . .  

[ ;  / - - - c~=0.25~ ,L/ ct - 0 . 0  

0 ~" i I ' I , , , , I , , , , I , , , , I , , , , I , , , , 

0.5 1 1.5 2 2.5 3 

K a  

Fig. 6. Variation of Arg(T) with frequency; a/h : 0.9 

the total reflection coefficient because of the way it is constructed from Qs and Qa. This is 
apparent in Fig. 3 where the approximate solution sometimes underestimates and sometimes 
overestimates the magnitude of the reflection coefficient. Fig. 4 compares the approximate and 
full solution for a semi-circular plate. In this case, the approximation is not particularly good 
except at very low frequencies and for plates of this length or longer it would be desirable to 
seek other approximations such as those based on high or low frequency asymptotics or even 
small gap approximations. 

The main purpose of this work is to see how the reflection and transmission properties of 
circular arc plates compare with those for the corresponding circular cylinder and thus assess 
the suitability of the arc plate as a lens element. Figure 5 illustrates the variation of the reflection 
coefficient with frequency for a set of plates of different lengths at a depth of a/h = 0.9. The 
matched series expansion method has been used for these calculations. The corresponding 
reflection coefficient for the circular cylinder is of course zero for all frequencies. As expected, 
as ~ decreases and the plate occupies more of the circle, so the reflection coefficient decreases 
on average. In particular, for plates which occupy half a circle or more there is very little 
reflection. However, for the shortest plate with a value of ~ = 0.75:r there can be substantial 
amounts of reflection at low frequencies. Figure 6 illustrates the variation in the phase of 
the transmission coefficient with frequency for the same set of plates. In addition, the results 
for the corresponding circular cylinder are given. Again the variation in the phase of the 
transmission coefficient does not significantly depend on the position of the ends of the plate 
for plates which occupy half a circle or more. It is as if the wave field only 'sees' the top part of 
the body and the fact that the lower part of the cylinder is missing has an insignificant effect. 
Thus, in circumstances in which the circular cylinder produces suitable phase shifts to be used 
as a lens element, a circular arc plate occupying a least half of the same circle should also be 
a candidate. The differences in the phase of the transmission coefficient are more noticeable 
when comparing the shortest plate with the cylinder, particularly at low frequencies. For these 
shorter plates, it is probably more sensible to compare the results with those for a submerged 
horizontal plate rather than those for a submerged circular cylinder. 

5. Conclusion 

In this work, the wave scattering by a circular arc plate submerged in deep water has been 
investigated using linear theory. A full numerical expression for the velocity potential was 
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o b t a i n e d  us ing  mu l t i po l e  po ten t i a l s  and  a ma tch ing  p rocedure .  In  addi t ion ,  an exp l i c i t  a p p r o x -  

ima te  so lu t ion  w h i c h  m o d e l l e d  exac t ly  the b e h a v i o u r  o f  the  ve loc i ty  po ten t i a l  at the t ips  

o f  the  p la te  was  d e r i v e d  us ing  a va r i a t iona l  p rocedure .  The  a p p r o x i m a t i o n  to the re f lec t ion  

coe f f i c i en t  p r o v e d  to be  accura te  for  p la tes  wh ich  were  shor t  c o m p a r e d  wi th  the w a v e l e n g t h  

and o c c u p i e d  a smal l  par t  o f  a c i rc le .  The  ful l  numer i ca l  so lu t ion  was  u sed  to c o m p a r e  the 

re f lec t ion  and  t r an smi s s ion  coeff ic ients  a s soc ia t ed  with  a n u m b e r  o f  p la tes  wi th  the cor re -  

s p o n d i n g  coef f i c ien t s  for  a s u b m e r g e d  c i rcu la r  c y l i n d e r  and it was  found  that  there  was  very  

l i t t le  d i f f e r ence  b e t w e e n  the re f lec t ive  p roper t i e s  o f  p la tes  which  o c c u p y  a ha l f  c i rc le  or  m o r e  

and those  o f  a c i r cu la r  cy l inder .  
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